

FORJADO MT-100 PROPIEDADES

MATERIA PRIMA

Acero

ESPESORES (mm)

0.75 hasta 1.2

ACABADOGalvanizado

10.90

182 64

SPESC	PR (mm)	
0	1.00	1.20
53	14,54	17,44

294 72

52,06

2.078

ANCHO ÚTIL 675 mm

W (cm³/m) – fibra superior31,9534,50 A_p (mm²/m)1.2971.385P = peso perfil por metro cuadradoI = ine

11.6

195.78

I = inercia perfil por metro lineal A_p=sección útil de acero por lineal

244 81

43.09

1.732

W = módulo resistente perfil por metro lineal

DESCRIPCIÓN Y APLICACIÓN

El forjado colaborante representa la solución constructiva más idónea para todas aquellas obras donde se requieran tanto las máximas prestaciones técnicas y mecánicas, como rapidez de ejecución y garantías. Gracias a sus características superiores, se adapta a cualquier tipología edificatoria (industrial, comercial, deportiva, residencial). Presenta notables beneficios económicos, sobre todo si se tiene en cuenta al inicio del proyecto comporta una disminución del canto medio del forjado, y por tanto una reducción de peso que se traduce en una reducción de la sección resistente de la estructura (pilares, vigas, cimentaciones).

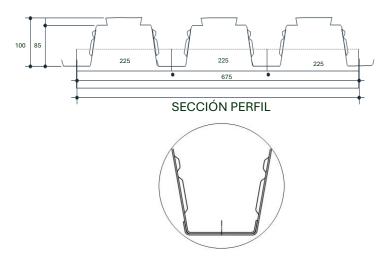
El fundamento de los forjados compuestos radica en la tecnología usada para potenciar la adherencia entre la chapa de acero conformada y el hormigón. Esta tecnología se denomina también forjado colaborante por la colaboración entro los dos materiales que componen el forjado, para hacer frente a las tensiones generadas por las cargas. La adhesión mecánica de los dos componentes se realiza a través de las indentaciones en los flancos inclinados del perfil de acero galvanizado. La adhesión química de por sí sola, no sería suficiente para garantizar una unión eficiente que haga realmente trabajar el forjado compuesto como estructura mixta.

Las características del MT-100 han sido desarrolladas en colaboración con el Grupo de Estructuras del Departamento de Medios Continuos de la Escuela de Ingenieros Superiores de Sevilla, dentro de un marco de cooperación con AICIA – Asociación de Investigación y Cooperación Industrial de Andalucía.

Los ensayos experimentales llevados a cabo se ajustan a las prescripciones de las Normativas Eurocódigo 4 y Eurocódigo 3, únicas normativas de referencia y obligado cumplimiento a nivel europeo.

Los valores publicados en las tablas se refieren a la sobrecarga estática admisible y la sección de armadura al momento flector negativo en caso de apoyos intermedios. Los ensayos a rotura de losas de diferente tipología han facilitado los parámetros característicos "m" y "k" que definen la recta de referencia de forjado MT-100. Esta recta proporciona el dato de sobrecarga admisible en función del espesor de la chapa y del canto del forjado.

Tras obtener estos valores, siguiendo las modalidades de ensayo descritas en el EC4, se ha comprobado por medio de los obligados ensayos de comprobación.


CARACTERÍSTICAS DEL PERFIL

NORMATIVA EMPLEADA

Características Geométricas											
Características	Valor	Unidades	Tolerancia/N	orma							
Canto de perfil (h)	100	mm	±1,5	EN 1090							
Paso de onda	225	mm	+4/-1	EN 1090							
Ancho de la cresta y valle	132,5/65	mm	+4/-1	EN 1090							
Ancho útil (w)	675	mm	(±0,1 * h) y ≤15	EN 1090							
Profundidad relieve alma	3.5	mm	-0.5/+1	EN 1090							
Longitud (l)	1.600 a 14.000	mm	+20/-5	EN 1090							
Altura / Anchura rigidizador	15/88	mm	-0.5 a + 1/ ±0,1	EN 1090							
Clase de ejecución		EXC2		EN 1090							

	Prestaciones del Pe	erfil				
Características	Valor	Uds.	Tolerancia/N	orma		
Desviación de la rectitud	≤ a la toleran.	mm	±2/ml (max.10)	EN 1090		
Desviación de la cuadratura	≤ a la toleran.	mm	≤ 0,005*w	EN 1090		
Desviación del solape lateral	≤ a la toleran.	mm	±2 s/500 mm	EN 1090		
Espesor de la chapa	0,75 a 1.2	mm	EN 10143	3		
Tipo de acero	S220GD a S350	GD	EN 10346	6		
Emisión cadmio y compuestos	CUMPLE - Sin emis	siones	EN 1090			
Emisión radioactividad	CUMPLE - Sin emis	siones	EN 1090			
Comportamiento al fuego	Broof (t1)		RD 110/20	08		
Durabilidad	Galvanizado en ca	liente	EN 10346	6		
Reacción al fuego	Clase A1		EN 13501-1			
Capacidad portante	Ver tablas de ca	rga	EN 1993 - EC3	y EC4		

Ref. Norma	Descripción
EN 508-1	Productos para cubiertas y revestimientos de chapa metálica. Especifican para los productos autoportantes de chapa de acero. Parte 1: acero.
EN 10143	Chapas y bandas de acero con revestimiento metálico en continuo por inmersión en caliente. Tolerancias dimensionales y de forma.
EN 10346	Productos planos de acero recubiertos en continuo por inmersión en caliente Condiciones técnicas de suministro.
EN 1090-2	Ejecución de estructuras de acero y aluminio. Parte 2: Requisitos técnicos para las estructuras de acero
EN 1090-4	Ejecución de estructuras de acero y aluminio. Parte 4: Requisitos técnicos para elementos estructurales y estructuras de acero conformados en frío para aplicaciones de cubierta, techo, forjado y muro.

DETALLE SOLAPE

									H (cm	1)								
		14	15	16	17	18	19	20	21	22	23	24	25	26		28	29	30
	2,00	1446	1621	1795	1927	2019	2109	2198	2285	2370	2453	2535	2615	2693	2770	2844	2917	2989
	2,20	1212	1357	1503	1649	1795	1892	1971	2048	2123	2197	2267	2340	2409	2477	2543	2607	2670
	2,40	1032	1156	1280	1404	1529	1653	1777	1850	1918	1983	2048	2111	2093	2196	2291	2349	2404
	2,60	890	998	1105	1212	1320	1427	1534	1641	1405	1491	1576	1662	1748	1834	1919	2005	2091
	2,80	778	871	965	1059	1153	967	1039	1112	1184	1256	1328	1400	1472	1544	1616	1688	1761
	3,00	686	769	852	698	760	821	882	943	1004	1065	1126	1187	1248	1309	1370	1431	1493
	3,20	440	492	544	596	648	700	752	804	856	908	960	1012	1064	1116	1168	1220	1272
	3,40	377	421	466	510	554	599	643	688	732	776	821	865	910	954	998	1043	1087
	3,60	324	362	400	438	476	514	552	590	628	666	704	742	780	818	856	894	932
	3,80	278	311	343	376	408	441	474	506	539	571	604	636	669	701	734	766	799
	4,00	239	267	295	323	351	379	406	434	462	490	518	546	574	601	629	657	685
	4,20	206	229	253	277	301	325	348	372	396	420	444	468	492	515	539	562	586
(E)	4,40	176	196	217	237	257	277	298	318	338	358	379	399	419	439	460	480	500
Luz	4,60	150	167	185	202	219	236	253	270	287	304	322	339	356	373	390	407	424
	4,80	127	142	156	171	185	199	214	228	243	257	271	286	300	314	329	343	358
	5,00	107	119	131	143	155	167	179	191	203	215	227	238	250	262	274	286	298
	5,20	89	99	109	118	128	138	148	157	167	177	187	196	206	216	226	235	245
	5,40	73	81	88	96	104	112	120	127	135	143	151	159	166	174	182	190	198
	5,60	58	64	70	76	82	88	94	100	107	113	119	125	131	137	143	149	155
	5,80	45	49	54	58	63	67	72	76	81	85	89	94	98	103	107	112	116
	6,00	33	36	39	42	45	48	51	54	57	60	63	66	69	72	75	78	81
	6,20	22	24	25	27	29	31	32	34	36	37	39	41	42	44	46	47	49
	6,40	12	13	13	14	14	15	15	15	16	16	17	17	18	18	19	19	20
	6,60	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	6,80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7,00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MT - 100 - DIPOSICIÓN 2 VANOS - 3 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 0.75 mm

									H (cm	1)								
		14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	2,00	1278	1351	1423	1494	1563	1631	1698	1763	1827	1890	1951	2010	2068	2125	2181	2235	2288
	2,20	1146	1211	1275	1337	1398	1458	1516	1574	1630	1685	1738	1790	1841	1891	1940	1987	2033
	2,40	1036	1094	1150	1206	1260	1313	1365	1416	1465	1514	1561	1607	1652	1696	1738	1780	1820
	2,60	943	995	1045	1095	1143	1191	1237	1282	1326	1369	1411	1452	1492	1531	1568	1605	1641
	2,80	864	910	956	1000	1043	1086	1127	1167	1207	1245	1283	1319	1355	1389	1423	1455	1486
	3,00	795	837	878	918	957	995	1032	1068	1104	1138	1171	1204	1236	1266	1296	1325	1353
	3,20	734	772	809	845	881	915	949	981	1013	1044	1074	1103	1132	1159	1186	1211	1236
	3,40	681	716	749	782	814	845	875	905	933	961	988	1014	1040	1064	1088	1111	1133
	3,60	634	665	604	662	720	778	810	836	862	887	912	935	958	980	1001	1022	1041
	3,80	591	479	529	580	630	681	732	775	799	821	843	865	885	905	924	942	959
	4,00	376	420	465	509	553	598	642	686	731	762	782	801	819	837	854	870	886
	4,20	331	370	409	448	487	526	565	604	642	681	720	743	760	776	791	805	819
	4,40	292	326	360	394	429	463	497	531	565	600	634	668	702	720	733	746	758
Luz (m)	4,60	257	287	317	348	378	408	438	468	498	528	558	588	618	648	678	692	703
	4,80	227	253	280	306	332	359	385	412	438	464	491	517	543	570	596	622	649
	5,00	200	223	246	269	292	315	339	362	385	408	431	454	477	500	523	547	570
	5,20	176	196	216	236	257	277	297	317	337	358	378	398	418	438	459	479	499
	5,40	154	172	189	207	224	242	260	277	295	312	330	348	365	383	400	418	436
	5,60	135	150	165	180	196	211	226	241	257	272	287	302	318	333	348	363	379
	5,80	117	130	143	156	169	183	196	209	222	235	248	261	274	288	301	314	327
	6,00	101	112	123	135	146	157	168	179	191	202	213	224	235	247	258	269	280
	6,20	86	96	105	115	124	134	143	153	162	171	181	190	200	209	219	228	237
	6,40	73	81	89	97	104	112	120	128	136	144	152	159	167	175	183	191	199
	6,60	61	67	74	80	86	93	99	106	112	118	125	131	137	144	150	156	163
	6,80	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130
	7,00	39	43	47	51	55	58	62	66	70	73	77	81	85	89	92	96	100

MT – 100 – DIPOSICIÓN 3 VANOS – 4 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 0.75 mm

									H (cm)									
																		30
	2,00	1338	1416	1492	1566	1639	1711	1781	1850	1918	1983	2048	2111	2173	2233	2291	2349	2404
	2,20	1201	1269	1337	1402	1467	1530	1592	1653	1712	1770	1827	1882	1936	1989	2040	2090	2139
	2,40	1087	1148	1207	1266	1323	1379	1434	1488	1541	1592	1642	1691	1739	1785	1831	1875	1918
	2,60	990	1044	1098	1150	1202	1252	1301	1349	1396	1441	1486	1530	1572	1612	1653	1692	1730
	2,80	907	956	1004	1051	1097	1143	1187	1230	1271	1312	1352	1391	1429	1466	1502	1536	1570
	3,00	835	880	923	966	1007	1048	1087	1126	1164	1201	1236	1271	1305	1338	1370	1401	1431
	3,20	763	813	852	890	928	965	1001	1036	1070	1103	1135	1166	1197	1226	1255	1282	1309
	3,40	685	753	789	824	757	818	879	940	986	1016	1045	1074	1101	1127	1153	1178	1202
	3,60	618	693	553	606	659	712	765	817	870	923	966	991	1016	1040	1063	1085	1106
	3,80	562	437	483	529	575	621	667	713	759	805	851	897	940	961	982	1002	1021
	4,00	342	382	422	463	503	543	583	623	664	704	744	784	824	865	905	927	944
	4,20	300	335	370	405	440	475	511	546	581	616	651	686	721	756	792	827	862
Luz (m)	4,40	263	294	324	355	386	416	447	478	509	539	570	601	631	662	693	723	754
zn-	4,60	231	257	284	311	338	365	391	418	445	472	499	526	552	579	606	633	660
	4,80	202	225	249	272	296	319	342	366	389	412	436	459	483	506	529	553	576
	5,00	177	197	217	238	258	278	299	319	339	360	380	400	421	441	461	481	502
	5,20	154	172	189	207	224	242	260	277	295	312	330	348	365	383	400	418	436
	5,40	134	149	164	179	194	210	225	240	255	270	285	300	316	331	346	361	376
	5,60	116	128	141	154	167	180	193	206	219	232	245	258	271	284	297	310	323
	5,80	99	110	121	132	143	154	165	176	187	198	209	219	230	241	252	263	274
	6,00	84	93	102	111	121	130	139	148	157	166	175	185	194	203	212	221	230
	6,20	70	78	85	93	100	108	115	123	130	138	145	153	160	168	175	183	190
	6,40	58	64	70	76	82	88	94	100	106	112	118	124	130	136	142	148	154
	6,60	47	51	56	60	65	70	74	79	83	88	93	97	102	107	111	116	120
	6,80	36	39	43	46	49	53	56	59	63	66	70	73	76	80	83	86	90
	7,00	26	28	31	33	35	37	39	42	44	46	48	50	53	55	57	59	61

HA-25 – fck=25N/mm2 – Chapa – fy=220N/mm2 – Flecha L/250 – 0% coef. Redistribución negativos.

apuntalar centro del vano

Para otros valores, contactar con el Departamento Técnico para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado. No nos responsabilizamos de las causas provocadas por el incumplimiento de las condiciones expresadas en todos los puntos de la presente ficha técnica.

						H (cm)						
	14	15	16	17	18	19	20	21	22	23	24	25
2,00	1536	1720	1905	2014	2109	2201	2292	2381	2468	2553	2637	2718
2,20	1285	1440	1594	1748	1893	1975	2056	2135	2212	2288	2362	2434
2,40	1093	1225	1356	1488	1619	1750	1859	1930	1999	2066	2132	2197
2,60	943	1056	1170	1283	1396	1510	1623	1736	1819	1879	1689	1781
2,80	823	922	1021	1120	1219	1318	1417	1193	1270	1348	1425	1502
3,00	726	813	900	751	817	882	948	1013	1079	1145	1210	1276
3,20	645	530	586	642	698	754	810	866	922	978	1034	1090
3,40	407	455	503	551	598	646	694	742	790	838	886	934
3,60	350	391	433	474	515	556	597	638	679	721	762	803
3,80	302	337	373	408	444	479	514	550	585	620	656	691
4,00	261	291	322	352	382	413	443	474	504	534	565	595
4,20	225	251	277	303	329	355	382	408	434	460	486	512
4,40	194	216	238	261	283	305	328	350	373	395	417	440
4,60	166	185	204	223	243	262	281	300	319	338	357	376
4,80	142	158	174	191	207	223	239	255	271	287	304	320
5,00	121	134	148	161	175	188	202	216	229	243	256	270
5,20	101	113	124	135	146	158	169	180	191	203	214	225
5,40	84	93	103	112	121	130	139	149	158	167	176	185
5,60	69	76	83	91	98	105	113	120	127	135	142	149
5,80	55	60	66	72	77	83	89	94	100	106	111	117
6,00	30	46	50	54	58	63	67	71	75	79	83	87
6,20	3	21	36	39	41	44	47	50	52	55	58	61
6,40			12	24	26	27	29	30	32	33	35	36
6,60				3	11	12	12	12	13	13	13	14
6,80												
7,00												

MT - 100 - DIPOSICIÓN 2 VANOS - 3 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 0.80 mm

									`			
						H (cm)						
	14	15	16	17	18	19	20	21	22	23	24	25
2,00	1321	1418	1492	1564	1635	1705	1773	1840	1905	1969	2032	2093
2,20	1185	1271	1336	1400	1463	1524	1584	1643	1701	1757	1812	1865
2,40	1072	1149	1207	1264	1320	1374	1427	1479	1530	1580	1628	1676
2,60	976	1046	1098	1148	1198	1247	1294	1341	1386	1430	1473	1515
2,80	894	957	1004	1050	1094	1138	1180	1222	1262	1302	1340	1378
3,00	823	881	923	964	1004	1043	1081	1119	1155	1191	1225	1259
3,20	761	813	852	889	925	960	995	1029	1061	1093	1124	1154
3,40	706	754	789	823	855	888	919	949	979	1007	1035	1062
3,60	657	702	733	764	773	823	851	878	905	931	956	981
3,80	614	654	569	623	678	732	786	815	839	863	886	907
4,00	405	453	501	548	596	644	691	739	780	801	822	842
4,20	357	399	441	483	525	567	609	651	693	735	764	782
E 4,40 4,60	316	353	390	427	464	501	538	575	612	649	686	723
Zn. 4,60	279	312	344	377	410	442	475	507	540	573	605	638
4,80	247	275	304	333	362	390	419	448	477	505	534	563
5,00	218	243	269	294	319	345	370	395	420	446	471	496
5,20	192	215	237	259	281	304	326	348	370	392	415	437
5,40	170	189	208	228	247	267	286	306	325	345	364	384
5,60	149	166	183	200	217	234	251	268	285	302	319	336
5,80	130	145	160	174	189	204	219	233	248	263	278	292
6,00	113	126	139	151	164	177	190	202	215	228	240	253
6,20	98	109	120	130	141	152	163	174	185	196	206	217
6,40	84	93	102	111	121	130	139	148	157	166	176	185
6,60	71	79	86	94	101	109	117	124	132	140	147	155
6,80	59	65	72	78	84	90	96	103	109	115	121	127
7,00	48	53	58	63	68	73	78	82	87	92	97	102

MT - 100 - DIPOSICIÓN 2 VANOS 4 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 0.80 mm

						H (cm)						
	14	15	16	17	18	19	20	21		23	24	
2,00	1383	1485	1563	1639	1714	1787	1859	1930	1999	2066	2132	2197
2,20	1242	1332	1401	1469	1535	1600	1663	1725	1786	1845	1903	1960
2,40	1124	1205	1266	1326	1385	1443	1499	1554	1608	1661	1712	1763
2,60	1024	1098	1152	1206	1259	1310	1361	1410	1458	1505	1551	1596
2,80	939	1005	1055	1103	1150	1197	1242	1286	1329	1371	1412	1452
3,00	865	925	970	1014	1057	1098	1139	1179	1218	1256	1292	1328
3,20	800	855	896	936	974	1012	1049	1085	1120	1154	1187	1220
3,40	723	794	831	867	902	936	943	1002	1034	1065	1095	1124
3,60	652	731	773	805	708	765	822	879	936	985	1012	1039
3,80	592	663	520	569	619	669	718	768	818	867	917	962
4,00	369	412	456	499	543	586	629	673	716	760	803	846
4,20	324	362	400	438	476	514	552	590	628	666	705	743
4,40	285	318	352	385	419	452	485	519	552	585	619	652
4,60	251	280	309	339	368	397	426	455	485	514	543	572
4,80	221	246	272	297	323	349	374	400	425	451	476	502
5,00	194	216	238	261	283	305	328	350	373	395	417	440
5,20	170	189	209	228	248	267	287	306	326	345	365	384
5,40	148	165	182	199	216	233	250	266	283	300	317	334
5,60	129	143	158	173	187	202	216	231	245	260	275	289
5,80	111	124	136	149	161	174	186	199	211	224	236	249
6,00	95	106	117	127	138	148	159	169	180	191	201	212
6,20	81	90	99	108	116	125	134	143	152	160	169	178
6,40	68	75	82	90	97	104	111	119	126	133	140	148
6,60	56	62	67	73	79	85	91	96	102	108	114	119
6,80	45	49	54	58	63	67	71	76	80	85	89	94
7,00	34	38	41	44	47	51	54	57	60	64	67	70

HA-25 – fck=25N/mm2 – Chapa – fy=220N/mm2 – Flecha L/250 – 0% coef. Redistribución negativos.

apuntalar centro del vano

Para otros valores, contactar con el Departamento Técnico para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado.

						H (cm)						
	14	15	16	17	18	19	20	21	22	23	24	25
2,00	1686	1874	2060	2192	2284	2375	2464	2552	2638	2721	2804	2884
2,20	1517	1686	1853	1971	2053	2134	2213	2290	2366	2440	2513	2584
2,40	1326	1485	1644	1786	1860	1932	2003	2072	2140	2206	2271	2335
2,60	1141	1278	1415	1553	1690	1762	1826	1888	1949	2008	2066	2123
2,80	994	1113	1233	1352	1472	1591	1673	1730	1785	1838	1891	1942
3,00	874	979	1084	1190	1295	1400	1505	1593	1369	1452	1536	1619
3,20	776	869	963	1056	1149	961	1032	1104	1176	1248	1319	1391
3,40	694	777	861	706	768	829	891	953	1015	1077	1139	1201
3,60	625	505	558	612	665	719	773	826	880	933	987	1041
3,80	392	439	485	532	578	625	672	718	765	811	858	904
4,00	342	382	423	463	504	544	585	625	666	706	747	787
4,20	298	333	369	404	439	475	510	545	580	616	651	686
4,40	260	291	322	352	383	414	444	475	506	537	567	598
4,60	227	254	280	307	334	360	387	414	440	467	494	521
4,80	198	221	244	267	290	313	337	360	383	406	429	452
5,00	172	192	212	232	252	272	292	312	332	352	372	392
5,20	148	166	183	200	217	234	252	269	286	303	321	338
5,40	128	142	157	172	186	201	216	231	245	260	275	290
5,60	109	121	134	146	159	171	184	196	209	221	234	246
5,80	84	102	113	123	134	144	155	165	176	186	196	207
6,00	49	77	94	102	111	120	128	137	146	154	163	171
6,20	19	41	70	84	90	97	104	111	118	125	132	139
6,40		10	32	62	72	77	83	88	93	99	104	110
6,60			1	24	53	59	63	67	71	75	79	83
6,80					14	41	44	47	50	52	55	58
7,00						4	27	29	30	32	34	35

MT - 100 - DIPOSICIÓN 2 VANOS - 3 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 1.00 mm

							H (cm)						
	2,00	1314	1460	1604	1705	1775	1844	1911	1976	2041	2103	2165	2225
	2,20	1178	1310	1439	1529	1590	1650	1709	1767	1824	1879	1932	1985
	2,40	1066	1184	1300	1381	1436	1489	1542	1593	1643	1691	1739	1785
	2,60	970	1078	1184	1257	1305	1353	1400	1445	1490	1533	1575	1616
	2,80	889	987	1084	1150	1194	1236	1278	1319	1358	1397	1435	1471
	3,00	818	908	997	1057	1097	1135	1172	1209	1245	1279	1313	1346
	3,20	756	839	921	976	1012	1046	1080	1113	1145	1176	1207	1236
	3,40	701	778	854	905	937	968	999	1028	1057	1085	1113	1139
	3,60	652	724	794	841	870	899	926	953	979	1005	1029	1053
	3,80	609	676	741	784	811	837	862	886	910	932	954	976
	4,00	570	632	693	733	757	781	803	825	847	867	887	906
	4,20	534	593	650	618	673	727	751	771	790	808	826	844
	4,40	502	453	501	550	598	646	694	721	738	755	771	787
Luz (m)	4,60	361	404	446	489	532	575	618	660	691	706	721	734
	4,80	322	360	398	436	474	512	550	588	626	661	674	687
	5,00	287	321	355	389	422	456	490	524	558	592	626	643
	5,20	256	286	316	346	377	407	437	467	497	528	558	588
	5,40	228	255	282	309	336	362	389	416	443	470	497	523
	5,60	203	227	251	275	299	322	346	370	394	418	442	466
	5,80	181	202	223	244	265	286	308	329	350	371	392	413
	6,00	160	179	198	216	235	254	272	291	310	329	347	366
	6,20	142	158	175	191	208	224	241	257	273	290	306	323
	6,40	125	139	154	168	183	197	211	226	240	255	269	283
	6,60	109	122	135	147	160	172	185	197	210	222	235	248
	6,80	95	106	117	128	139	149	160	171	182	193	204	215
	7,00	82	91	101	110	119	129	138	147	156	166	175	184

MT - 100 - DIPOSICIÓN 2 VANOS 4 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 1.00 mm

							H (cm)						
		14	15	16	17	18	19	20	21	22	23	24	25
	2,00	1376	1529	1680	1786	1860	1932	2003	2072	2140	2206	2271	2335
	2,20	1235	1372	1508	1602	1667	1731	1793	1854	1914	1972	2029	2085
	2,40	1117	1242	1364	1449	1507	1563	1619	1673	1726	1777	1828	1877
	2,60	1018	1131	1242	1319	1371	1421	1471	1519	1566	1612	1657	1701
	2,80	933	1036	1138	1208	1254	1300	1344	1387	1429	1471	1511	1550
	3,00	859	954	1047	1111	1153	1194	1234	1273	1311	1348	1384	1419
	3,20	794	882	968	1027	1065	1102	1138	1173	1207	1241	1273	1305
	3,40	737	819	899	952	987	1020	1053	1085	1116	1146	1175	1204
	3,60	687	762	837	886	917	948	978	1007	1035	1062	1088	1114
	3,80	641	712	781	827	855	883	910	936	962	987	1010	1034
	4,00	601	666	731	774	695	751	807	863	896	919	940	961
_	4,20	564	625	686	565	614	664	713	763	812	857	877	896
Luz (m)	4,40	530	413	457	500	544	588	632	675	719	763	807	836
Zn-	4,60	327	366	405	444	482	521	560	599	637	676	715	754
_	4,80	291	325	359	394	428	462	497	531	565	600	634	668
	5,00	258	288	319	349	380	410	441	471	501	532	562	593
	5,20	229	256	283	310	337	364	391	418	445	471	498	525
	5,40	203	227	251	274	298	322	346	370	394	417	441	465
	5,60	180	201	222	243	264	285	306	327	348	369	390	411
	5,80	159	177	195	214	232	251	269	288	306	325	343	362
	6,00	139	156	172	188	204	220	236	253	269	285	301	317
	6,20	122	136	150	164	178	192	206	221	235	249	263	277
	6,40	106	118	130	143	155	167	179	191	204	216	228	240
	6,60	92	102	112	123	133	144	154	165	175	185	196	206
	6,80	78	87	96	105	114	122	131	140	149	158	167	175
	7,00	54	73	81	88	95	103	110	118	125	132	140	147

HA-25 – fck=25N/mm2 – Chapa – fy=220N/mm2 – Flecha L/250 – 0% coef. Redistribución negativos.

apuntalar centro del vano

Para otros valores, contactar con el Departamento Técnico para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado.

No nos responsabilizamos de las causas provocadas por el incumplimiento de las condiciones expresadas en todos los puntos de la presente ficha técnica.

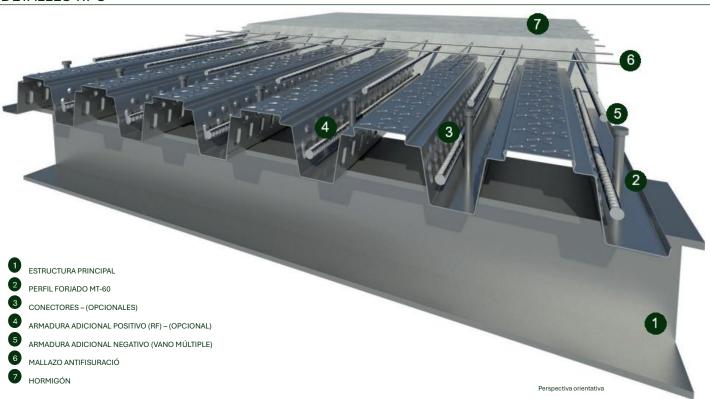
						H (cm)						
	14	15	16	17	18	19	20	21	22	23	24	25
2,00	1731	1924	2115	2302	2486	2611	2702	2791	2878	2963	3046	3128
2,20	1558	1731	1902	2071	2236	2348	2428	2507	2584	2660	2733	2806
2,40	1413	1571	1726	1878	2028	2129	2201	2271	2340	2407	2473	2537
2,60	1291	1435	1576	1715	1851	1943	2008	2071	2133	2193	2253	2310
2,80	1167	1307	1447	1575	1700	1784	1842	1900	1956	2010	2064	2116
3,00	1025	1148	1271	1394	1517	1640	1699	1751	1802	1851	1900	1947
3,20	909	1018	1127	1236	1345	1454	1563	1621	1667	1519	1607	1694
3,40	812	909	1006	1104	1201	1299	1090	1166	1242	1318	1393	1469
3,60	730	818	905	993	818	884	950	1016	1082	1148	1214	1280
3,80	661	740	599	657	715	772	830	888	946	1003	1061	1119
4,00	424	475	526	576	627	677	728	778	829	879	930	981
4,20	373	417	462	506	550	595	639	684	728	772	817	861
4,40	328	367	406	445	484	523	562	601	640	679	718	757
4,60	289	323	357	392	426	460	495	529	563	598	632	666
4,80	254	284	315	345	375	405	435	465	495	526	556	586
5,00	224	250	276	303	329	356	382	409	435	462	488	515
5,20	196	219	243	266	289	312	335	359	382	405	428	451
5,40	172	192	212	233	253	273	293	314	334	354	375	395
5,60	150	167	185	203	220	238	256	273	291	308	326	344
5,80	106	145	160	175	191	206	221	237	252	267	282	298
6,00	68	100	138	151	164	177	191	204	217	230	243	256
6,20	35	61	93	129	140	151	162	174	185	196	207	218
6,40	8	27	53	86	118	128	137	146	156	165	174	184
6,60			18	45	78	106	114	121	129	137	144	152
6,80				9	36	68	92	98	105	111	117	123
7,00						26	58	77	82	87	92	97

MT - 100 - DIPOSICIÓN 2 VANOS - 3 APOYOS

SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 1.20 mm

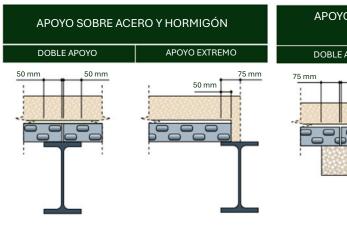
							H (cm)						
		14	15	16	17	18	19	20	21	22	23	24	25
	2,00	1350	1500	1648	1793	1936	2032	2100	2167	2232	2296	2358	2419
	2,20	1211	1345	1478	1608	1736	1821	1881	1940	1997	2054	2108	2162
	2,40	1095	1217	1336	1454	1570	1646	1699	1751	1802	1851	1900	1947
	2,60	997	1108	1217	1324	1429	1497	1545	1591	1636	1680	1723	1765
	2,80	913	1015	1114	1212	1308	1370	1413	1454	1495	1534	1572	1610
	3,00	841	934	1025	1115	1203	1260	1298	1335	1372	1407	1441	1475
	3,20	777	863	947	1030	1111	1163	1198	1231	1264	1296	1327	1357
	3,40	721	800	879	955	1030	1078	1109	1140	1169	1198	1225	1252
	3,60	671	745	818	889	959	1002	1031	1058	1085	1111	1136	1160
	3,80	626	695	763	829	894	935	960	985	1009	1033	1055	1077
	4,00	586	651	714	776	836	874	897	919	941	962	983	1002
	4,20	550	610	669	727	784	818	840	860	880	899	917	935
Luz (m)	4,40	517	573	629	683	736	768	787	806	824	841	858	874
	4,60	487	540	592	603	656	709	740	757	773	788	803	818
	4,80	459	509	493	540	588	635	682	712	726	740	753	766
	5,00	357	400	442	485	527	569	612	654	683	696	708	719
	5,20	321	359	397	435	473	511	549	587	626	655	665	675
	5,40	288	322	356	391	425	459	493	527	562	596	626	635
	5,60	259	289	320	351	381	412	443	474	504	535	566	596
	5,80	232	260	287	315	342	370	397	425	452	480	507	535
	6,00	208	233	258	282	307	332	356	381	406	430	455	479
	6,20	187	209	231	253	275	297	319	341	363	385	407	429
	6,40	167	186	206	226	245	265	285	304	324	344	363	383
	6,60	149	166	184	201	219	236	254	271	289	306	324	341
	6,80	132	148	163	179	194	209	225	240	256	271	287	302
	7,00	117	130	144	158	171	185	199	212	226	240	253	267

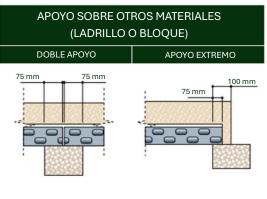
MT - 100 - DIPOSICIÓN 3 VANOS - 4 APOYOS


SOBRECARGAS ESTÁTICAS (daN/m²) ESPESOR 1.20 mm

						H (cm)						
2,00	1413	1571	1726	1878	2028	2129	2201	2271	2340	2407	2473	2537
2,20	1269	1410	1549	1685	1819	1909	1973	2035	2095	2155	2212	2269
2,40	1148	1276	1401	1525	1646	1726	1783	1838	1892	1944	1995	2045
2,60	1046	1162	1276	1389	1499	1572	1622	1671	1719	1766	1812	1856
2,80	959	1065	1170	1272	1373	1439	1484	1528	1571	1613	1654	1694
3,00	883	981	1077	1171	1264	1324	1365	1405	1443	1481	1518	1553
3,20	817	907	996	1083	1169	1224	1260	1296	1331	1365	1398	1430
3,40	758	842	924	1005	1084	1135	1168	1201	1232	1263	1293	1322
3,60	706	784	861	936	1009	1056	1086	1116	1144	1172	1199	1225
3,80	660	733	804	874	942	985	1013	1040	1066	1091	1115	1139
4,00	618	686	753	818	882	922	947	971	995	1018	1040	1061
4,20	580	644	706	768	828	864	887	910	931	952	972	991
4,40	546	606	664	722	778	725	779	833	873	892	910	927
4,60	514	571	626	550	598	647	695	743	791	837	853	869
4,80	486	539	448	491	534	577	620	664	707	750	793	815
5,00	324	362	401	439	478	516	555	593	631	670	708	747
5,20	290	324	358	393	427	461	496	530	565	599	633	668
5,40	259	290	320	351	382	413	443	474	505	535	566	597
5,60	231	259	286	314	341	369	396	423	451	478	506	533
5,80	207	231	256	280	305	329	353	378	402	427	451	476
6,00	184	206	228	250	271	293	315	337	358	380	402	424
6,20	164	183	203	222	241	260	280	299	318	338	357	376
6,40	145	162	179	197	214	231	248	265	282	299	316	333
6,60	128	143	158	173	188	204	219	234	249	264	279	294
6,80	106	126	139	152	165	179	192	205	218	231	244	258
7,00	73	106	121	133	144	156	167	179	190	202	213	224

HA-25 – fck=25N/mm2 – Chapa – fy=220N/mm2 – Flecha L/250 – 0% coef. Redistribución negativos.

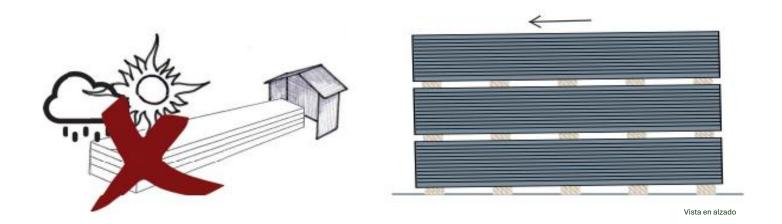

Para otros valores, contactar con el Departamento Técnico para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado.


DETALLES TIPO

Sección tipo de forjado colaborante MT-100, en el que aparecen indicadas todas las armaduras que se pueden llegar a colocar en fusión de los requisitos de cálculo marcados por el proyectista. Incluso los conectores que soldados o atornillados serán necesarios cuando se requiera que el forjado trabaje solidariamente con la viga metálica de soporte.

CONDICIONES DE APOYO DE LAS CHAPAS EN VIGAS

La unión del forjado a la estructura será por tornillo, clavo o soldadura, en función de la decisión del proyectista siempre У respetando las medidas mínimas indicadas para cada caso en las figuras adjuntas. Se recomienda la fijación de cada chapa a medida que montando y comprobar al final que todas estén fijadas.



ESTOCAJE DEL MATERIAL

Con el fin de evitar la acción del viento, la humedad, la condensación y la lluvia, se recomienda estocar el material de acero galvanizado en zonas cubiertas, ventiladas y en una atmósfera lo más seca posible. En caso del estocaje a la intemperie, los paquetes se deberán aislar del suelo mediante tacos de altura diferente con el fin de obtener una pendiente que favorezca la evacuación del agua. Además, se cubrirán con lonas o plásticos garantizando una correcta ventilación para evitar la concentración de agua o humedad excesiva que puede hacer aparecer óxido blanco que solo afecta estéticamente el material sin mermar sus propiedades resistentes.

APUNTALAMIENTO DEL FORJADO

Se entiende por apuntalamiento la colocación de apoyos intermedios para reducir temporalmente la distancia entre apoyos durante las fases de vertido y fraguado del hormigón. Una vez fijadas las chapas, en los casos donde sea necesario, se colocará un puntal en medio del tramo. En caso de necesitar dos puntales (tramo de luz libre importante) los puntales se colocarán a 1/3 y 2/3 de la luz libre del tramo. El croquis ilustra la manera correcta de colocar un puntal.

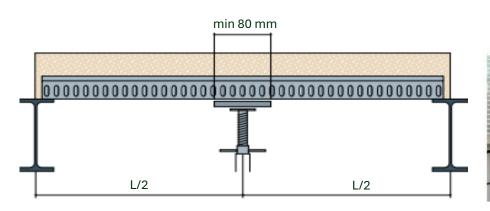
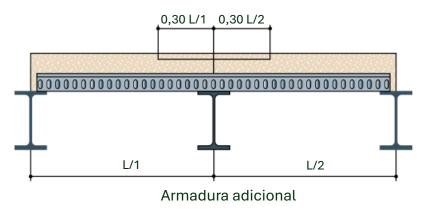



Imagen apuntalamiento provisional

ARMADURA NEGATIVO

Cuando la losa diseñada es continua, es decir presenta apoyos intermedios, sobre éstos se producen momentos flectores negativos. Se hace entonces necesario colocar este tipo de armadura, a una profundidad de 25 mm respecto a la cara superior del forjado. Las barras corrugadas deben tener una longitud suficiente para cubrir un tercio de la luz de cada uno de los vanos adyacentes, como se muestra en el croquis adjunto. La sección mínima de armadura requerida para hacer frente a estos momentos flectores negativos se detalla en los correspondientes cálculos.

MALLAZO ANTIFISURACIÓN

Su misión principal es la de hacer frente a los esfuerzos de retracción generados por el secado del hormigón, evitando su fisuración. Contribuye además a la distribución de pequeñas cargas puntuales actuantes sobre el forjado. Se debe colocar a una profundidad de 20 mm respecto a la cara superior del forjado, cubriendo enteramente su superficie.

MALLAZO ANTIFISURACIÓN EN CAPA DE COMPRESIÓN FORJADO (mm)

	H (cm)																	
			10	11	12	13	14		16	17	18		20	21	22	23	24	
0.	0	200X200X4	-	-	-	-	√	$\sqrt{}$	$\sqrt{}$	-	-	-	-	-	-	-	-	-
Mallazo	1-100	200X200X5	-	-	-	-	-	-	-	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	-	-	-
Σ	Σ	200X200X6	-	-	-	-	-	-	-	-	-	-	-	-	-	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

PESO PROPIO Y VOLUMEN DE HORMIGÓN

VALORES DE PESO PROPIO DEL FORJADO COLABORANTE (Kn/m2)

	H (cm)																
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	MT-100 e=0.75mm					1,9	2,14	2,38	2,62	2,86	3,1	3,34	3,58	3,82	4,07	4,3	4,54
ij	MT-100 e=0.8mm	-	-	-	-	1,91	2,15	2,39	2,63	2,87	3,11	3,35	3,59	3,83	4,07	4,31	4,55
Pe	MT-100 e=1.0mm	-	-	-		1,93	2,17	2,41	2,65	2,89	3,13	3,37	3,61	3,85	4,09	4,33	4,57
	MT-100 e=1.2mm	-	-	-	-	1,96	2,2	2,44	2,68	2,92	3,16	3,4	3,64	3,88	4,12	4,36	4,6

VOLUMEN DE HORMIGÓN POR UNIDAD DE SUPERFICIE (m3/m2)

	H (cm)																
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	MT-100 e=0.75mm	-	-	-	-	0,075	0,085	0,095	0,105	0,115	0,125	0,135	0,145	0,155	0,165	0,175	0,185
≡	MT-100 e=0.8mm	-	-	-	-	0,075	0,085	0,095	0,105	0,115	0,125	0,135	0,145	0,155	0,165	0,175	0,185
Pel	MT-100 e=1.0mm	-	-	-	-	0,075	0,085	0,095	0,105	0,115	0,125	0,135	0,145	0,155	0,165	0,175	0,185
	MT-100 e=1.2mm	-	-	-	-	0,075	0,085	0,095	0,105	0,115	0,125	0,135	0,145	0,155	0,165	0,175	0,185

COMPORTAMIENTO AL FUEGO

EL factor R es la capacidad portante de un forjado colaborante en situación de incendio. Según el Eurocódigo 4 Parte 1.2, para este tipo de soluciones será de 30 minutos (R-30). Este dato no necesita ninguna comprobación, mientras el cálculo del forjado colaborante se haya hecho de acuerdo con las especificaciones del Eurocódigo 4 Parte 1.1.

Si el proyecto requiere una resistencia al fuego superior a los 30 minutos (R-30), el proyectista puede optar por distintas soluciones:

- Incorporar a la cara inferior del forjado algún sistema de protección contra el fuego. Una opción consiste en crear un revestimiento continuo y de espesor homogéneo con morteros o pinturas o incorporar falsos techos de placas de yeso u otros materiales (cuidado de especial manera la estanqueidad de las juntas entre elementos).
- Incorporar al forjado armaduras de tracción. De esta manera se incrementa la capacidad portante del forjado en situación de incendio (criterio R) pero no la capacidad de aislamiento térmico (I). La capacidad de aislamiento térmico sigue dependiendo del espesor efectivo del forjado y de la protección adicional que se disponga por la cara inferior del perfil de acero (*).

(*) Contactar con nuestro Departamento Técnico para los casos en los que se requiera un factor R mayor a 30 minutos para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado.

CONECTORES- SOLUCIÓN VIGA MIXTA JUNTO A ESTRUCTURA

Importante indicar que los conectores no influyen en la resistencia propiamente dicha del forjado colaborante. Es decir, el hecho de disponer de conectores no hace que el forjado sea más resistente que cuando no se coloquen.

En esta solución constructiva, el perfil para forjado colaborante se une a la estructura metálica por medio de los conectores. El forjado pasa a ser parte de la misma estructura portante del edificio del edificio, dejando de ser un elemento monolítico cuyo peso es soportado por las vigas y pilares sobre los que apoya. Funciona como capa de compresión de la sección resistente, que de esta manera ve su resistencia notablemente incrementada. Esto permite considerar en los cálculos, la suma de las secciones resistentes de la viga metálica y el forjado. La decisión sobre el tipo de estructura a adoptar y el correspondiente cálculo son responsabilidad del Proyectista.

Estos conectores pueden ser solados a través de la chapa del forjado a la estructura de soporte o bien fijados mecánicamente por disparo y fulminante o similar.

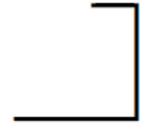
Conectores fijados mecánicamente

Vertido de hormigón:

El hormigonado sobre las chapas grecadas se realizará mediante los métodos tradicionales: bombas y tuberías o cubilote. Todo aceite, suciedad, untuosidad remanente del proceso de fabricación o sustancia perjudicial, presente en la cara superior del perfil, deberá ser eliminado antes de comenzar la fase de vertido del hormigón. Para conseguir las propiedades finales del forjado especificadas en el proyecto, hay que aplicar el máximo cuidado en esta fase, evitando una excesiva deformación del forjado, la segregación del árido o las pérdidas de lechada. El hormigón se verterá en la medida de lo posible sobre las vigas de apoyo del forjado, desde la mínima altura posible. Es necesario usar una tubería de salida del hormigón dotada de un asa que permita un manejo fácil y práctico, ya que en ningún caso se verterá el hormigón desde una altura mayor de 30 cm. Hay que evitar cualquier acumulación de material, e ir distribuyéndolo longitudinalmente a los nervios del perfil de acero, desde las vigas hacia los vanos. La circulación de carretilla se realizará sobre tablones de 30 mm de grueso colocados sobre la malla, asegurándose que no coincidan en la misma zona del forjado más de tres operarios al mismo tiempo. Para garantizar el buen funcionamiento del forjado hay que realizar una compactación satisfactoria alrededor de los conectores, de las armaduras y sobre el relieve de la chapa. No es necesario vibrar el hormigón. En caso de pérdidas de lechada con la consecuente aparición de manchas en la parte inferior del perfil, se aconseja limpiar antes del secado con un simple chorro de agua.

Apertura de huecos en los forjados:

Generalmente en las obras es necesario prever huecos para el alojamiento y paso de instalaciones y bajantes a través del forjado. En este caso los huecos se deben plantear previamente al hormigonado, utilizando bloques de poliestireno expandido o cualquier otro medio de encofrado. Cuando el lado del hueco es mayor de una onda, será necesario reforzar longitudinal y transversalmente el perímetro del hueco a nivel estructural.


En general se puede afirmar que:

- Los huecos de hasta 300 mm de lado no precisan refuerzo.
- Los huecos con lado comprendido entre 300 y 700 mm de longitud precisan armaduras de refuerzo.
- Los huecos con lado mayor de 700 mm de longitud precisan colocación de estructuras auxiliares de soporte. Para abrir estos huecos, el perfil metálico se cortará siempre y cuando el hormigón esté curado. Es importante no perforar la losa con equipos de percusión una vez esté fraguada, ya que las vibraciones pueden afectar la colaboración entre la chapa de acero y el hormigón, generando pérdida de adherencia y por tanto de capacidad portante.

Tipos de remate:

Para agilizar la construcción de un forjado colaborante y optimizar el tiempo de ejecución, nuestro fabricante ha creado unos exclusivos remates de acero galvanizado. Se trata de piezas que aún sin ser imprescindibles son muy útiles, ya que sustituyen a determinadas operaciones de encofrado que de otra forma se harían de manera más artesanal y aproximativa en la obra:


- Remates de borde de forjado (R1).
- Remates de atirantado (R2).
- Remates de cambio de dirección del forjado (R3)

Remate de borde de forjado (R1) – LINEAL

Remate de atirantado (R2) – PUNTUAL

Remate de cambio dedirección de forjado (R3) - LINEAL

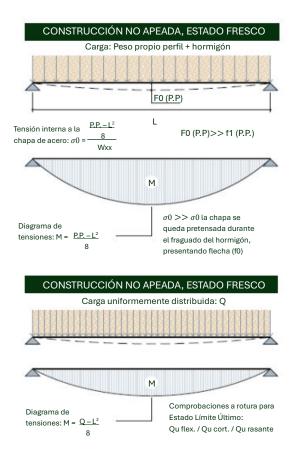
CONSIDERACIONES DE CÁLCULO

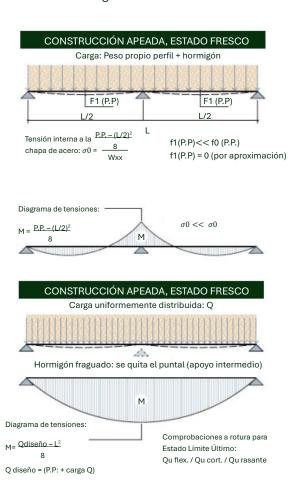
Hipótesis de cálculo:

Los resultados que figuran en las tablas de sobrecarga estática, obtenidos según el procedimiento establecido por la Normativa EC4 y EC3, parten de las siguientes hipótesis de cálculo:

- Las cargas que actúan sobre el forjado son distribuidas y predominantemente estáticas.
- Las luces del forjado se sitúan en la dirección de los nervios de la chapa.
- Para el estudio de las losas en fase de servicio se usa el análisis elástico, para la comprobación tensional a flexión se considera la teoría plástica.
- Los resultados de las tablas se refieren a un forjado colaborante sin conectores, es decir, no describen el comportamiento de la solución de viga mixta.
- El hormigón considerado en el cálculo es un HA-25 (*).
- El límite elástico considerado en el cálculo del acero del perfil MT-100 es 220 MPa (*), y el coeficiente parcial de seguridad para Estados Límites Últimos del acero del perfil es 1,10.
- El modelo de cálculo empleado considera los siguientes estados límites: en fase de ejecución la flexión representa el estado límite último, y la deformación el estado límite de servicio. En fase de servicio los estados límites últimos son representados por la flexión, los esfuerzos rasantes, los cortantes verticales, mientras que el estado límite último es la deformación.
- Criterio de flecha cuando la chapa de acero nervada actúa como encofrado: f‹l/250 ó f‹20 mm(*), con L= luz libre entre apoyos. En el cálculo de estas deformaciones se considera el peso de la chapa y del hormigón fresco, pero no se consideran las cargas de ejecución, puesto que son temporales.
- Criterio de flecha en fase de servicio: f‹l/250 (*) en cualquier caso contemplado en las tablas.
- Coeficientes de mayoración de las cargas empleados en los cálculos:
 - Coeficiente de mayoración de pesos propios: 1.35.
 - Coeficiente de mayoración de cargas permanentes: 1.35.
 - Coeficiente de mayoración de cargas de uso: 1.50.
- Los valores de las "Tablas de carga de Servicio para el Perfil MT-100" han sido calculados de acuerdo con las especificaciones del EC4 parte1.1 en fase de construcción del forjado, y como losa mixta en fase de servicio del mismo. Las tablas hacen referencia a una tipología genérica de forjado definida en los puntos anteriores. El calculista autor del proyecto es el responsable de realizar el cálculo del forjado de acuerdo con las particularidades relativas a las cargas actuantes, los materiales empleados y otras propias de cada proyecto. Los valores de sobrecarga estática que figuran en las tablas son los valores de sobrecarga máxima admisible en servicio, donde las cargas representan la suma de las cargas permanentes y de las sobrecargas de uso actuantes sobre el forjado. El peso propio del forjado compuesto ya ha sido tenido en cuenta en los cálculos.

^(*) Para otros valores, contactar con el Departamento Técnico para evaluar la solución óptima en cada caso y recibir un asesoramiento personalizado.




CONSIDERACIONES DE CÁLCULO

Interpretación de los diferentes sombreados en las tablas de sobrecarga admisible: diversidad de enfoque teórico por introducción de puntal (durante la ejecución del forjado).

El usuario de las tablas de sobrecarga del forjado compuesto con perfil MT-100, puede extrañarse al comprobar cómo, en un determinado momento, al aumentar en 1 cm el canto de la losa de hormigón, la sobrecarga admisible baja de manera significativa. Este salto en los valores corresponde a la entrada en la zona de apuntalamiento, sombreada en rosado de las tablas. Esto se debe al diferente enfoque teórico que sostiene el estudio y comprobación de una estructura no apeada y apeada (según recoge la Normativa Eurocódigo 4 y Eurocódigo 3). Una chapa de acero no apuntalada, en fase de forjado, se deforma proporcionalmente al peso propio del hormigón vertido. Una vez fraguado, el forjado presenta flecha (fO) y la chapa tiene una tensión interna correspondiente a su deformación. Cuando este forjado se carga (carga Q uniformemente distribuida), en el centro del vano se registrará el máximo valor de momento flector (correspondiente a la carga Q). Es el momento de comprobar el forjado a las diversas solicitaciones presentes (momento flector, cortante, rasante): en la casi totalidad de los casos el forjado se romperá por alcanzar el máximo momento rasante. Es lícito afirmar que la carga que ha determinado el deslizamiento entre el hormigón y la chapa de acero es igual a la suma del peso propio de la losa y de la carga Q aplicada. En las estructuras apeadas, el puntal intermedio parte en dos la luz libre entre apoyos, y la flecha (fO') que se registra es sensiblemente inferior a la flecha fO (registrada por el mismo forjado no apuntalado). Por aproximación se puede afirmar que la flecha fO' es igual a O. Durante el fraguado, del hormigón la chapa no presenta tensión, siendo el puntal que aguanta el peso propio del hormigón vertido. Una vez fraguado el hormigón, quitando el puntal y aplicando a la estructura una carga Q, se comprueba el forjado a todas las solicitaciones presentes. Una vez más el colapso se produce por alcanzar el Estado Límite Último a momento rasante: en este caso, la carga Q determina la rotura de la losa. En las tablas de sobrecarga admisible no es lícito añadir el peso propio de la losa al valor registrado durante el ensayo a rotura de la losa.

Resumiendo, en una estructura no apeada, es lícito añadir el peso propio del forjado al valor de sobrecarga de uso registrado, debido a que la estructura ya había asumido esta carga (el peso propio) antes de fraguar: la flecha fO representa la deformación correspondiente a la tensión interna de la chapa generada por el vertido del hormigón.

